Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays.
نویسندگان
چکیده
Convective deposition of a monolayer of microspheres by drawing a meniscus of a suspension across a substrate is used to fabricate microlens arrays to enhance the photon extraction efficiency of light emitting diodes (LEDs). The self-assembly of a colloidal crystal within the blade-drawn thin film is dominated by capillary forces and the thickness of this crystal depends on many parameters, including the deposition rate and particle size. This study investigates these and other parameters such as angle and hydrophobicity of the deposition blade that have not previously been considered. Using a confocal laser scanning microscope, the local and long-range order of the deposited particles are evaluated by the radial distribution function, and the fraction of the number of nearest neighbors and local bond order, demonstrating the dependence of the microstructure on the deposition parameters. Our results suggest previous descriptions of the critical deposition parameters are inadequate for understanding how various processing conditions influence deposition. For instance, increasing the deposition blade angle from 20 degrees up to 90 degrees requires an increase in deposition rate to achieve a monolayer deposition. The microlens arrays were fabricated on LEDs where polystyrene and silica are coated in consecutive depositions. Heat is used to sacrifice the polystyrene layers to result in an ordered array of partially buried silica microspheres that act as lenses to scatter light from the device. Enhancement in light extraction efficiency of 2.66 times was demonstrated for InGaN-based light emitting diodes employing micron scale microlens arrays with 1 um diameter silica microspheres.
منابع مشابه
Experimental exploration of the fabrication of GaN microdome arrays based on a self- assembled approach
The formation of large scale, highly uniform and controllable GaN microdome arrays based on a self-assembled low cost method was investigated. The deposition of a large area, hexagonally close-packed SiO2 microsphere monolayer on top of the III-nitride semiconductor using the dip-coating method was optimized, which leads to surface coverage of 87% of SiO2 on GaN (ideal close-packed microsphere ...
متن کاملHigh fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing
The authors present a novel hyperfidelity fabrication method for microlens arrays. The method consists of the steps of a fabrication of a sacrificial master mold of a microlens array in a soft polymer by photolithography and thermal reflow, b conformal duplication of a daughter mold of complementary patterns in a hard material by dispensing an UV-curable material liquid on top of the polymer mo...
متن کاملTwo step process for the fabrication of diffraction limited concave microlens arrays.
A two step process has been developed for the fabrication of diffraction limited concave microlens arrays. The process is based on the photoresist filling of melted holes obtained by a preliminary photolithography step. The quality of these microlenses has been tested in a Mach-Zehnder interferometer. The method allows the fabrication of concave microlens arrays with diffraction limited optical...
متن کاملFabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography.
This paper describes a strategy that uses template-directed self-assembly of micrometer-scale microspheres to fabricate arrays of microlenses for projection photolithography of periodic, quasiperiodic, and aperiodic infrared metasurfaces. This method of "template-encoded microlens projection lithography" (TEMPL) enables rapid prototyping of planar, multiscale patterns of similarly shaped struct...
متن کاملSpecial Issue on Microlenses
The study and application of microscale lenses and lens arrays have been actively researched in recent years; new approaches in the fabrication of microlenses and microlens arrays have emerged. Also, novel applications of these microlenses and microlens arrays have been demonstrated. In an effort to disseminate the current advances in this specialized field of microlenses and microlens arrays, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 24 21 شماره
صفحات -
تاریخ انتشار 2008